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ABSTRACT 

A method is presented by which an  optimal control may be ob- 

tained for a linear t i m e  varying system with t i m e  delay. The perfor- 

'mance criterion is quadratic with a fixed finite upper limit. The results 

. are a se t  of partial differential equations with boundary conditions, 

whose solution yields a n  optimal feedback control. The discussion 

includes possible methods for the solution of the partial differential 

equations. 



I. INTRODUCTION 

Many physical systems are be$ modeled by the use  of time de- 

lay equations 111; that.is, a differential equation of the form 

In some systems of this type it is desirable to select certain control 

parameters to minimize a performance criterion modeled by a cost  func- 

tional of the form 

J(u) = G(x(T), T) + lT g(t,x(t), u(t))dt. 

0 
t 

Kharatishvili [21 has approached this problem by extending Pontryagin' s 

Maximum Principle to time delay systems. The actual solution involves 

a two point boundary value problem i n  which advances and delays are 
. 

present. In addition, this solution does not yield a feedback controller. 

Time optimal control of delay systems has been considered by Oguz- 

toreli [31. He has obtained several results concerning "bang-bang'' 

controls which parallel those of LaSalle [4f for non-delay systems. For 

a time invariant system with a n  infinite upper l i m i t  Krasovskii [SI has de- 

veloped a closed loop controller involving a n  integral over the delay period. 

For a linear t ime varying system with a single delay Krasovskii [SI 

states that if a quadratic cost  functional is used, the optimal cost func- 

tional must be of the form 

X' (to)Pl(tdx(to)+ X' (to) so pZ(to, s)x(t 0 +s)ds 
-h 

+ lo lo x' (to+s)p3(to,r, s) x(t 0 3- r)dr ds, 
-h -h 
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where h is the delay. These results,  however, are not proven and no 

. information is given on how to obtain p (t ),  p (t , s) and p (t , r, s). 1 0  2 0  3 0  

This paper uses Krasovskii' s 161 results to develop a set  of 

partial differential equations which may be solved for the optimal feed- 

back controll.er of a linear time varying system with delay. The cost  

functional is quadratic and has a finite upper l i m i t ,  Although the re- 

sults obtained are for systems with a single delay, they are easily ex- 

tended to multiple delay systems. The partial differential equations 

obtained are discussed and some techniques for solutions are mentioned. 

Under the restriction that the initial t ime t of the cost  functional 
0 

is within a delay period of the final time T,  the problem is also solved 

by the use of a known technique and the results compared. 

11, NOTATION AND PROBLEM STATEMENT 

Consider a system of the form 

k(t) = A(t)x(t) + B(t)x(t-h) + D(t)U(t) (1) 

where x(t) is an  n-vector; u(t) is a n  m-vector, the control; A(t), B(t) and 

D(t) are nxn, nxn and n x m  matrices respectively, which are continuous 

in t, the time; h is a positive scalar constant, the delay. The following 

notation will be used: 

(i) The dot denotes the time derivative. 

(ii) ' denotes the transpose. 

(iii) C[-h, 01 and C [-h, 01 will denote the space of functions 1 

continuous on [-h, 01 and the space of differentiable functions 

on [-h, 03 respectively. 
., 
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A (iv) x (s) = X(T+S) = cp(s), ss[-h, 01 where cps C[-h, 03, and 
7 

therefore the convention x c C[-h, 01. 

(v) x denotes a solution of (1) for ts[T,Tl ,  x = cp and -rc[to,T]. 

1 
(vi) Let  V(t, cp):[to, TI x C[-h, 01 3 R  be a continuous functional, define 

dt  Iu(t) A t+o 

7 
U 

7 

U 
* v(t+A t, Xt+AtJ-V(t, cp) 

-1 A t  c 4 Lim - Wt, (p) - 

where xu 

function at t ime  t. 

(v) R denotes the teals .  

represents the solution of (1) and 'p is the initial t+A t 

1 

A control is desired which will minimize the functional 

subject to (1). Such a control will be called optimal. In (2) F' is a 

symmefric, positive semi-definite.nxn matrix; Q(t) is a continuous, syrn- 

metric, positive semi-definite nxn matrix; R(t) is a continuous, symmetric 

positive definite mxm matrix; t < T-h. 

Preliminary Results 

0 

The following lemma establishes a sufficient condition for a 
- 

control u to be optimal. 

Lemma 1. If it is possible to find a continuous functional 

V(t,cp):[to,T] x C[-h, 01 3 R , and a function uO(t) such that 
1 

and in  view of Equation (1) with cp as  a n  initial condition. 

(ii) dt LO(t) + (PI (O)Q(t)cp(O)+uO' (t)R(t)uO' (t) = 0 (3) dV(ttcp) 



Vts[to, TI and Vcps C[-h, 01. 

Then 

and 

J(T (p, u0) = V(T I cp) - < J(T I cp,  u) , VT e Eto, TI and Vcpe CL-h, 01. 

h-oof. In the evaluation of Equation (3) along a trajectory of (l), cpP(0) 

becomes x (0). Therefore, the integration of Equation (3) along a tra- 

jectory of (1) with u(t) = uO(t) yields 

U 
t 

-dw I xt) 
+ x;(0)Q(t)xt(O)+-uO' (t)R(t)uO(t)] uo dt =O ST E dt 3 F X  

7 

but x (0) = x(t) so t 

dV(t ,  x ) 
dt =O uo -t- x' (t)Q(t)x(t)+uO' (t)R(t)uO(t) ] t 

X=X 
ST{ T dt  

where 

.x ,= cpI an  arbitrary element of CL-h, 01. T k n  
7 

dt. uo = -ST {x' (t) Q( t) x( t)+ u0 ' (t) R( t) u0 (t) ] uo -V(T (p)+V(T I XT) I 
2 F X  7 F X  

From Condition (i) of the theorem it is seen that 

and hence 

dt uo + JT {x' (t)Q(t)x(t)+uO' (t)R(t)uO(t)] uo = xi (T)FX(T) 1 
XFX 7 F X  



5 

Integration of Equation (4) from T to T yields 

Q.E.D. 

4 
III. AN OPTIMAL FEEDBACK CONTROL . 

Lemma 1 will now be used to obtain sufficient conditions for an 

optimal control in feedback form. From this point on x will be used to 

indicate the part of the solution x from t-h to t. It should be noted 

t 
U 

that i f  t is the initial time, x =cp, an arbitrary element of C[-h, 01. t 

A form for v ( t , x )  will be assumed and the unknown variables t 

in the form chosen so as to satisfy conditions (i), (ii) and (iii) of 

Lemma 1. It will be shown later that if V(t ,x) is of the form 
. t- 

+ So so x' (t+s)yg(t, r, s)x(t+r)drds, 
-h -h 

(5) 

then the following will be satisfied for a l l  r and s contained in [-h, 01: 

. y,(t, s) = 0 for T-h < t+s (6) 

and 

y3(t,r, s) = 0 for T-h < t+s or T-h c t+r (7) 
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and for F # 0, y (t,  s) is discontinuous a t  s+t = T-h and y (t,r,  s) is 
2 3 

discontinuous at 

s+t = T-h and rctt 5 T-h or r+t = T-h and s+t - < T-h. 

Because of the above two separate cases  will be considered. 

Case  1 (t T-hl 

Define 

where pl(t) {t, s), p ( t , r ,  s) are nxn matrices. It is assumed without 

loss of generality [see Appendix I1 that p (t) is symmetric and 

p2 3 

1 

p3(t,r, s) = p;(t, s , r ) .  - 
pZ(t, s).and p {t ,r ,  s) are assumed differentiable with respect to t , r  and 

3 

s in the region t < T-h. 

dVl(L XJ 
i t  will be necessary to differen- dt  

In order to evaluate 

1 tiate x(t+s) with respect to t for sc[-h, 01, therefore assume x c: C [-h, 01, 

the space of differentiable functions. The differentiation of Equation 

t 

(8) with respect to t ime yields 

+ x' (t)pl(t)k(t)+2k' (t) J'O pZ(t, s)x(t+s)ds 
-h 

ap+ 4 0 
x(t+s)ds +2x' (t) J' pZ(t, s)A(t+s)ds 

-h a t  
+2x' (t) s o  

-h 

' f so f o  A' (t+s)p3(t, r, s)x(t+r)drds 
-h rh 



a P 3 b  r /  s) 
x( t+r) drd s 

a t  

+ so So x' (t+s)p (t,  r, s)A(t+r)drds (9) 3 -h -h 
dV1 (tl xt) 

is now evaluated along the trajectories dt  Using Equation (9)/ 

of (1). Noting that 

dx(t+s) = dx(t+S) . 

d t  d s  

and that p (t, s) and p ( t , r ,  s) are differentiable, integration by parts 

yields 

2 3 

dVl(t/ xt) 1 .  = 2 ~ '  (t)A' (t)pl(t)x(t)+2x' (t-h)B' (t)pl(t)X(t) 
F X  

d t  
.. + 2u' (t)D(t)pl(t)x(t)+x' (t)fil(t)x(t)+2x' (t)A' (t) 1 0 p2(t, s)x(t+s)ds 

-h 
0 0 P2(t, s ) x ( ~ + s ) ~ s + ~ u '  (t)D' (t) J 

-h -h 

. - .  

. + 2 ~ '  (t-h)B' (t) J P2(tr S)X(t+S)ds 

aPg( t / r /  SI 0 a P 2 h  SI 
x( t+r) drd s- 2 x' (t) J' x( t+ s) d s  

as 

a p 3 b  r, SI 
ar 

-h a t  
+ fO so XI (t+s) 
-h -h 

x( t+r) dr] d s 0 F O  
+ J' [XI (t+s)Pg(t, r r  s)x(t+r) i, -so XI (t+s) -- 
-h -h 

s= 0 3P3(t/ rr SI 
+ Sh [x' (t+s)p3(t, r r  s)x(t+r) I s=- -so x' (t+s) x( t+r) d sjdr . 0 

as -h 
Adding x' (t)Q(t)x(t)+u' (t)R(t)u(t) to both sides and grouping terms yields 
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aP3(t, r r  s) aP3(tI L 4 - - ]x(t+r)drds f2u' (t)D' (t)pl(t)x(t) 

+2u' (t)D' (t) so pz(t, s)x(t+s)ds+u' (t)R(t)u(t). 

ar as 

-h . 
Now a u l  w i l l b e  found such that condition (iii) of Lemma 1 is satisfied. . 
From Equation (10) it is seen that 

if and only if 

= o  

u(t) as expressed in  Equation (11) is a global minimum of 

+ x' (t)Q(t)x(t)+u' (t)R(t)u(t) 
F X  

d t - 
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and condition (iii) of Lemma 1 is satisfied by 

u(t) appears only in the last three terms (L.T.T.) of Equation ( lo ) ,  which 

on substitution of ul(t) for u(t) yields 

L.T,T. = - 2 ~ '  (t)pl(t)D(t)R-l(t)D1 (t)pl(t)x(t) 

-J 

- 2x(t) p1 (t) D (t) R- (t) D ' (t) J' 

2x' (t+ s) p i  (t , s) D (t) R- (t) D ' (t) p (t) x( t) d s 

pz (t , s) x( t+s) d s 

-h 

-h 
-2 [ 0 x' (t+s)pi(t, s)ds D(t)R-'(t)D' (t) lo p2(t, s)x(t+s)ds 

+ XI (t) P1 (t) D(t) R- (t) D ' (t) P1 (0 x(t) 

-h -h 

ro so x' (t+s)pi(t, s)D(t)R"(t)D' (t)pZ(t,r)x(t+r)drds 
r h  -h 

. . - .  

.+ x' (t)pl(t)D(t)R-l(t)D' (t) J'O pz(t, s)x(t+s)ds 
-h 

+ f o  XI (t+s)pi(t, s)ds D(t)R-'(t)D' (t)pl(t)x(t), 
-h 

which reduces to 

L . T . T . = -x' (t) p1 (t) D (t) R- (t) D ' (t) p1 (t)x(t) 

-2x' (t) so pl(t)D(t)R-'(t)D' (t)pZ(t, s)x(t+s)ds 
-h 

-so so x' (t+s)pi(t, s)D(t)R-'(t)D' (t)p2(t,r)x(t+r)drds (14) 
-h -h 

Utilizing Equation (14), Equation (1 0) becomes 
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- 2 p1 (t) D(t) R- (t) D ' (t) p2 (t , s)]x( t+ s) d s 

-pi  (t , s) D (t) R- ' (t) D ' (t) p2 (t , r)] x( t+r) drd s 

In order to satisfy condition (ii) of Lemma 1, Equation (15) is equated 

to zero. This must hold for a l l  t < t < T-h where x is a completely 0 t 

arbitrary element of C [-h, 01. A necessary and sufficient condition for 1 

this equality is that the following equations hold for t < T-h: 

The above equations are clearly sufficient. It remains to be shown that 

they are necessary. 

Letting x(t) = 0 and x(t-h) = 0 and equating (15) to zero yields 

2 

- p i  (t , s) D(t)R- ' (t)D ' (t) p2 (t , r)]x( t+r) drd s = 0 
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Since the integrand is assumed continuous Corollary 1 of Appendix 2 

states that Equation (18) is necessary. 

Letting x(t) = 0 and equating (15) to zero yields 

From Corollary 2 Appendix 2 Equation (20) is seen to be necessary. 

Now let x(t-h) = 0 and equate (15) to zero. It is seen that 

aP,(t, s)  ap2(t, S) 
+XI (t) so c-2 as +2 a t  +2A' (t)P2(t, S)+2P3(t, 0, s) 

-h 

- 2 p;( t) D (t) R" (t) D ' (t) p2 (t , s ) lx(  t+ s) d s = 0. 
, 

It is apparent that for this to be true 

and 

ap2(tt  4 aP,(t, s) 

a s  a t  
XI (t)JO c-2 +2 +2A' (t)pZ(t, s)+2p3(t, 0, s) 

-h 

-Zp,(t)D(t)R-'(t)D' (t)p2(t, s)]x(t+s)ds = 0 (2 2) 

From Corollary 2 Appendix 2 for (22) to be satisfied Equation (17) is neces- 

sary and for (21) to be satisfied it is necessary that (16) be  satisfied. 

Now equating (15) to zero yields 

ZX' (t-h)[B' (t)p1(t)-pi(t,-h)fx(t) = 0 

For this to be true (19) is necessary. Thus (16)-(20) are seen to be 

necessary for expression (15) to be zero, 



1 2  

Case I1 (t 2 T-h) 

Define 

T- h l  t v,(t,xJ = x' (t)w1(t)x(t)+2x1 (t) J w2(t, s)x(t+s)ds 
-h 

XI (t+s)w (t, r, s)x(t+r)drds 
3 -h 

+ ST-h-t s T-h-t -h 

where wl(t), w2(t, s) and w (t,r,  s) are nxn matrices, 

w2(t, s) is assumed differentiable for t - > T-h 

3 

nd -h: s < T-h-t, 
c 

w (t,r, s) is assumed differentiable for t>T-h - and -h<ssT-h-t  - 3 

and - h s  r s  T-h-t. 

This form is chosen since Equations (6) and (7) imply that 
c 

J'O .w2(t, s)x(t+s)ds = 0 
T- h- t 

and 
. -  

-So x' (t+s)w (t ,r ,  s)x(t+r)dr = 0. 3 T-h- t 

It is assumed without loss  of generality that w (t) = W'Jt) and 

w3(t,r, s) = w' (t, s ,r) .  

1 

3 

Differentiation of Equation (24) with respect to time and noting 

that 

dx(tl-s) = dx(t+s) 
dt  d s  

yields 

T- h- t ' T-h-t a w 2 h  s) 
w2 (t , s) x( t+ s) d s+2 x' (t)J x( t+ s) d s 4-23? (t) J 

a t  -h -h 

x t+s) 
d s- 2 xi ( t) w2 ( t , T- h- t) x( T- h) 

T- h- t 

-h 
+2x' (t)J w2(tt ds 
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w (t ,r ,  s)x(t+r)drds 
T-h-t T-h-t dx' ( t + ~ )  

-h ds 3 -h 
" S  s 

x(t+r 
+ ST-h-t S T-h-.t X' (t-f-S)w3(t,r, s) dr drds 

-h -h 

aw3(t,r, s) 

a t  
x (t+r)drds + ST-h-tST-h-t XI (t+s) 

-h -h 

X' (t+S)W (t,T-h-t, s)x(T-h)ds - ST-h-t -h 3 

XI (T-h)w (t, r, T-h-t)x(t+r)dr. - ST-"' -h 3 

dV2(t,xt) 
* is now evaluated along the trajectories 

d t  
Using Equation (25), 

of (1). Since w (t, s) and w (t, r, s) have been assumed differentiable, 

integration by parts yields 

2 3 

dv, (t, xt) 
=2 X' (t)A' (t) w (t) X( t) +2 X' (t- h) B ' (t) w (t) X( t) 

I U  
F X  

dt 

T-- h- t 

-h 
+2 u ' (t) D ' ( t) w (t) x( t) +x' (t) G ( t) x( t) + 2 x' (t) A ' (t)[ w2(t, s)x(t+s)ds 

T- h- t w2(t, s)x(t+s)ds+2u' (t)D' (t) J w2 (t , s)x( t+ s) d s 
T- h- t 

-h -h 
3 - 2 ~ '  (t-h)B' (t) J' 

X(t+ S) d S- 2 x ' (t) W, (t I T- h- t) x(T- h) 
T-h-.t - aw2 

-h 
-2x' (t) J- 

a s  

aw3(t, r, s) 
x' (t+s) x( t+r) dr s 

+ ST-h-tST-h-t -h -h a t  

FT- h- t 
+ ST-h-t -h [x' (t+s)w3(t,r, s)x(t+r) 1 F - h  

awg(t,r l  SI 
x' (t+s) x( t-t-r) d r] d s -JT-,-, -h. ar 
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s=T- h- t 
s=- h [x' (t+s)w (t, r, s)x(t+r) I +STlh-' -h 3 

-ST-h- -h as 

aw3(t,r, s) 
XI (t3-s) x( t3-r) d s] dr 

-ST-h-t X' (T-h)w3 (t , r, T- h- t)x(t+r) dr 
-h 

-JTmh-' xi (t+s)w3(t, T-h-t, s)x(T-h)ds. 
-h 

Adding x' (t)Q(t)x(t)+u' (t)R(t)u(t) to both s ides  and grouping terms yields 

I 
---(t.xt) dvZ I d t  'u 3- x' (t)Q(t)x(t)+u' (t)R(t)u(t) = x(t)[ZA' (t)wl(t) 

x=-X 

+Q (t) +el (t) Ix(t) 3-X' (t- h) C2 B ' (t) w1 (t) - 2 wk (t , - h)] X( t) 

aw3(t, r, SI awg(t, r, s) aw3(t, r ,  s) 
3 x( t3-r) drd s XI (t+s) { - - 

i- ST-h-t -h S T-h-t -h at  a s  ar 

+2u' (t)D' (t)wl(t)x(t)+2u' (t)D' (t) T-h- t W2(t, s)x(t+s)ds 

-h 

Now a u2(t) will be found such that (iii) of Lemma 1 is satisfied. u2(t) 

is found just  as ul(t)  was previously, and is a global minimum of (26); 

w2(t, s)x(t+s)ds (27) 
u2(t) = -R-'(t)D' (t)w,(t)x(t)-R-l(t)D' (t) f T- h- t 

-h 

This is substituted into (26) to obtain 
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dv2 (t, XJ 
+XI (t) Q ( t )  x( t )  +u ' (t) R( t )  u (t)=x' (t) [2A ' ( t) w1 ( t )  +Q ( t )  1 .  

P X  
dt  

+il ( t)+wl (t) D (t) R- (t) D ' (t) w1 (t)]x( t) +2x' (t- h) [B ' (t) w1 (t) 

T-h-t 

-h 
- 2 w1 (t) D (t) R- (t) D' (t) w2 (t , s)] x( t+ s) d s+x' (t- h)J [2B' (t)w2(t, s) 

aw <t;r, SI 

a t  
3 x' (t+s) [ -Zwi(t,-h, s)]x(t+~)ds+J T- h- t J T- h- t 

-h -h 

aw3(t,r ,  s) aw3(t,r, s) 

a s  ar 
- - - w;l (t , s) D( t) R- (t) D ' (t) w2 (t  r)]x( t+r) drd s 

In order to satisfy condition (ii) of Lemma 1 Equation (28) is equated to 

zero for all x E C 1-h, 01 and for al1.T - -  > t > T-h. A s  before a necessary 

and sufficient condition for this to be true for T - -  > t > T-h is 

(2 8) 
.. 

1 
t - 

Gl (t) - w1 (t) D ( t) R- (t) D' (t) w ( t) +A ' (t) w1 (t) +w (t) A (t) +Q (t) = 0 (2 9) 

aW2(tt s) aw2(t, SI 
a t  a s  

- +A' (t) w2 (t , s) - w1 (t) D (t) R-' (t) D' (t) w2 (t s)= 0 (30) 

and 

(32) 

(33) 

where -h < s < T-h-t, - h <  r < T-h-t . 
L I  - -  

Since Vl(t,x ) is to be the optimal cost  functional for t < T-h and 
t 

V2(t,x,) is the optimal cost  functional for t - > T-h i t  is clear that 
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or 
X' (T-~)[P~(T-~)-W~(T-~)IX' (T-h)+x' (T-h)J 0 [p2(T-h, s)-w2(T-h, s ) ] ~ s  

+f 0 0  x' (T-h+s)[p3(T-h, r ,  s)-w3(T-h, r, s)]x(T-h+r)drds = O  
-h 

(34) 
-h -h 

must be satisfied. Equation (34) is satisfied if and only if Corollary 

1 and 2 Appendix 2) 

P1(T-h) = W1(T-h) (3 5) 

p 2 (T-ht S) = W2(T-ht S )  

pg(T-h,r, s) = W3(T-h,r, s) 

(3 6) 

(37) 

To actually force (35)-(37) to be satisfied, wl(T-h), w (T-h, s) and 

w3(T-h,r, s) may be used a s  additional boundary conditions for (16)- 

(18). V,(t,x,) and V2(t ,x)  and ul(t) and u2(t) are now combined in the 

following way. - 

2 

t 

ul( t )  for t < T-h 

u2(t) for t - > T-h 

V,(t,x$ for t < T-h 

uo(t) = 1 
for t-h < t < T - -  

V(t /  xt)= (39) 

It is seen that uO(t) and V(t,x ) defined in this way satisfy conditions 

(ii) and (iii) of Lernrna 1, all that remains is to satisfy condition (i) of 

t 

Lemma 1. To do this 

wl(T) = F (4 0) 

Therefore, V(t,x ) and uO(t) satisfy Lemma 1 and are hence the optimal t 

cost and control respectively. 

Equations (6) and (7) are now derived. These equations arise 

from a close examination of a delay system when T, the initial time, 
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is within a delay interval of the final t ime.  If T L > T-h, x(t-h) becomes 

a known function of t ime over the entire optimization interval and is 

given as a part of the initial condition. From this i t  is clear that the 

optimization problem for the delay system (1) is equivalent to minimiza- . 

tion of (2) subject to 

%(t) = A(t)x(t) + z(t) + D(t)u(t) 

where 

z(t) = B(t)x(t-h) and T 2 T-h. 

The optimal cost for the new problem depends only on A(t), z(t), D(t), 

R(t) I Q(t) I F, T and X(T) 

ma l  cost is fixed. Since the two systems are equivalent, V(T , X  ) for 

T >T-h, as  expressed in (5), must be such that it does not depend on 

x(t) for. T - h s  t < T . A necessary and sufficient condition [Appendix 21 

171 . Once these functions are chosen the opti- . 
, I- 

. -  

for this to be true is that Equations (6) and (7) be satisfied. 

N. SOME OBSERVATIONS 

The solution of the problem is complicated by the need to solve 

a system of partial differential equations. Several ideas will now be 

presented which will give more insight into methods of solution and 

utilization of the boundary conditions. 

Vl(t,xt) in Equation (8) may have been selected as 

This results in a different but equivalent form of the equations involving 

the p*' s. These equations may be derived by assumming 
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and 

p 3 ( t t r ,  s) = p*(t, 3 t-tr, t+s). (44) 

Substituting Equations (43) and (44) into (16)-(20) and noting that 

ap;(t, t+s) a p;(tk q) * ap;(t, 9) 
- + 

a t  a t  I q=t+s as I q=t+s 

and 

The same procedure may be carried out for V (tt x ) where t > T-h yielding - 2 t  

Gi (t) +A ' (t) w; (t) +w; (t) A ( t) - w; (t) D (t) R- (t) D (t) w; (t) +Q (t) = 0 (5 0) 

(5 1) B' (t)w;(t) = w;' (tt t-h) 

aw;(t, 9) 
a t  +Af (t)w;(t, q)-w!(t)D(t)R-'(t)D' (t)w$(tt q) = O  (52) 

B' (t)w$(t, q) = wz(t, qt t-h) 

a w p  q, 
-w*' 2 (t, q)D(t)R-l(t)D' (t)w;(t,v) = O  

a t  . 

where T - -  < t < T-h, t-h - -  < q < T-h, t - h s  v T-h. 

(5 3) 

(54) 
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Substituting p*(t, tl-s) into Equation (38) for the optimal control yields 

for t T-h, 

2 

ul(t) = -R-l(t)D' (t)p;(t)x(t)-R-'(t)D' (t) 0 p;(t, t+s)x(t+s)ds 

-h 
Let q = t+s and ul(t) becomes 

( 5  5) 
ul(t)  = -R-l(t)D' (t)p2(t)x(.t)-R-l(t)Di (t) t p;(t, q)x(q)dq 

t-h 

Then for T-h t 5 T 
u2(t) = -R-'(t)D' (t)w;(t)x(t)-R-l(t)D' (t) T- h wi(t ,  q)x(i)dq 

t- h 

A technique for the solution of (50)-(54) will now be presented. First, 

w*(t) is obtained from (SO),. using w?(T) = F. Utilizing w*(t) and Eq. 

(Sl), Figure 1 illustrates the information known about w*(t, q) as well 

as  a possible approach to the solution of Equation (52). First (52) is 

1 1 

2 

solved for q fixed a t  q T-2h c-q1 L T-h. 1' 

This solution will involve a n  unknown constant and will be valid 

along a line of q=q for T-h < t < q +h as illustrated in Figure 1. Then t 

is varied until a boundary condition can be used to evaluate the unknbwn 

1 - -  1 

constant. From Figure 1 i t  is seen that if t=q +h, the boundary condition 1 

(51)'may be used to evaluate the unknown constant. 

Carrying out the above idea analytically, the solution of Equa- 

tion (52) is of the form 

w?$t,ql) = 'P(t;dC1 

where 'P(t,T) is a solution of (52) such that 'P(T,T) = I. If t is now 

changed and q held constant, the boundary condition a t  t=q +h may be 

used to evaluate c , yielding 

1 1 

1 
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Utilizing Equation (57) it is clear that w*(t, q) can be calculated for 

T-h < t < T, t-h < q < T-h. Knowing w;(t, q), w*(t, q,v) may also be 

determined by the above approach. Equation (54) is solved for q and 

2 

3 C I  - c  

v fixed at q .and v 

before. Then t is varied along the line t ,  q v until boundary condi- 

tions (53) can be used to evaluate the unknown constant. 

The solution involves a n  unknown constant as  

1' 1 

1 1' 

In Equation (57) if F # 0 and q = T-h then 

w*(q +h) = F ,  hence 

1. 

1 1  

w$(t,T-h) = g(t,T-h)FB(T-h). 

Therefore, i f  B(T-h) # 0 

wz(t,T-h) # 0 T - h s  t T. 

Since it will be shown that (6) is satisfied, i.e. 

* wg(t,q) = 0 for T-h < q - t V t  > T-h, 

it is clear that w*(t,q) has  a discontinuity at q=T-h. In a similar fashion 

it can  be shown that w*(t, q, v) is discontinuous a t  q=T-h and v - c T-h or 

qs T-h and v = T-h, 

2 

3 

The main problem remaining is that of finding a technique for the 
-_ 

total solution of the partial differential equations. One of the most power- 

ful methods adaptable to this problem is that of finite difference. This 

method could be used with Equations (16)-(20) and (29)-(33) or (45)-(54)' 

whichever is more desirable for a particular problem. It would be possi- 

ble to use  Equation (47) and its equivalent for w*(t, q,v) to obtain the 

solution for t - > T-h. Using the solution a t  FT-h as a boundary condi- 

tion, the solution could then be obtained for t < T-h using difference 

3 

- 

techniques. 
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It is interesting to compare the optimal control generated to 

minimize (2) for t > T-h subject to 0- 

k( t) = A (t) x( t) +D (t) u( t) + z (t) (5 8)  

where 

z(t) = B(t)x(t-h) 

and the optimal control to minimize (2) subject to (1). Since, as was 

mentioned, the systems are equivalent, the controls should be equal. 

The optimal control for (58) is [7] 

uR(t) = -R-' (t) D (t) K( t) x( t)+R- ' (t) D (t) g (t) 

where K(t) is a solution to the Riccati equation and ._ - - .  

(5( t) = [-A( t) +D (t) R- (t) D (t) K(  t)] g (t) -K( t) z( t) 

g(T) = 0. 

(5 9) 

Since 

Z(t) = B(t)x(t-h) , 

where Q (t, 0) is the fundamental matrix for (59). Letting p q + h  and re- R 

versing the limits of integration yield 
-_  

T-h 

t- h 
%(t)= -R-'(t)D' (t)K(t)x(t)-R-l (t)D' (t) J' BR(t, q+h)K(q+h)B(q+h)x(q)dq (60) 

Utilizing Equations (56) and (57) , the optimal control for (1) is 

T-h 

t- h 
u 2  (t)=- R- ( t) D ( t) w i  (t) x( t) - R- ' (t) D ' ( t) Q ( t , q + h) w; (q+ h) E3 (q +h) x(q 1) d q 

Since wi(t) = K(t) and mR(t, 0) = Q(t,  0) it is seen that %(t)=uZ(t). 

A method has been presented which generates an optimal feed- 

back controller for time varying systems with delay. A se t  of partial 
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differential equations and boundary conditions , whose solution yields 

an optimal feedback controller, are presented. The existence of a solu- 

tion to these equations has not been proven and would be a problem for 

further research. Techniques for the possible numerical solution have 

been suggested, although their convergence for this problem has not 

been investigated. For the degenerate case where h=O the above results 

reduce to those obtained previously for non-time delay syitems [7]. 
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APPENDIX I 

It will be shown that no loss of generality results when p (t) 
1 

and p (t,r, s) are restricted by 3 

P p )  = P;(t) 

~ g ( t ,  rr  SI = p' 3 (t, s, r) . 
Lemma 1. 

x' (t+r)G(t, r, s)x(t+s)drds = J -  s -  
-h -h 

for all continuous G(t, r, s) . 
Proof ~ 

-h --h 

=so so XI (t+r) Gm)x(t+$drds+JoJo 2 x' (t+r) (tt " x(t+s)drds. 
-h-h -h -h 

Transposing the second term on the right hand side yields 

[G(t,r, s)+G' {t,s,r 11 x(t+s)drds so lo XI (t+r) 2 -h -h 

.=so fO xt (t+r) x(t+r)drds+JoJo x' (t+s) G(t'slr) x(t+r)drds. 
-h -h -h -h 

Since r and s are only dummy variables and have the same l i m i t s  of inte- 

gration, interchange r and s, and then the order of integration yielding 

=lo so x' (t+r) mx(t+s)drds+JoJo 2 x' (t+r) G(t' 2 " x(t+s)drds 
-h-h -h -h 

=so so x' (t+r)G(t,r, s)x(t+s)drds 
-h - h .  

24 

Q.E.D. 



25 

It is well known that 

Hence the form of p (t) and p ( t , r ,  s) may be restricted and sti l l  generate 

the same functionals obtainable by arbitrary p (t) and p ( t , r ,  s). 

1 3 

1 3 



APPENDIX 2 

Theorem I. 

V(T,X ) for T > 7  > T-h does not depend on x(t) for T-h < t < T - 7 

if and only if 

p,(tl s) = O  

p3(t,r, s) = O  

t 2 s+t > T-h 

t e > s+t > T-h or t >i'r+t > T-h 

where p (tl s) is continuous for T-h < t+s < t and p ( t / r ,  s) 'is continuous 

for t - > s+t > T-h or t - > r+t > T-h. 

3 c 2 

Proof. 

For T > T > T-h 
c 

I 

+so ST-h-7 x' (7+s)p3(7 , r ,  s)x(T+r)drds 
. T-h-7 -h 

(A. 3) 

It is clear that only the las t  four terms of (A.3) depend on x(t) for T-h<t< 7 

and that if x(t) = 0 for T-h< t <  7 the las t  four terms of (A.3) are zero; 

hence if they are to be independent of x(t) for T-h< t <  7 they must always 

be zero. A sufficient condition for this is that Equation (A. 1) and (A. 2)  

be satisfied. In order to establish necessity two corollaries will now be 

proved. 

26 
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Corollary 1. 

(A. 4) 
b b  

a a  

implies p(r, s) = 0 for a < r 5 b and a < s - < b, where p(rl s) is an  nxn 

matrix, x(t) is a n  n vector, 

B(a ,  b)=J J x' (r)p(r, s)x(s)drds=O v xsCCa, b] 3 x(a]=x(b)=O 

p(r, s) = p' (s, r) and p(r, s) is continuous €or a < r - < b and a < s - < b .  

Proof. 

Letx = 0, V k # i  k 
then 

assume P..(q, d > 0 where qs(a,  b) then since p(r, s) is continuous 11 

3 c > 0 3 pii(r, s) > 0 for q-e r s  q+s and q-s - c  < s < q+e.  Let 

xi(r) > 0 for a < q-e < r < q+c < b and x (r) =O elsewhere where 
i 

x (r) is continuous then i 

since x(r)pii(r, s)x(s) > 0 for q-e < r < q+s and q-s < s < q+E 

B ( a , b )  > 0. This may be repeated for pii(q, q) < 0 and obtain B(a, b) < 0. 

These are  both contradictions, therefore 

pii(q, q) = 0 for qs (a, b) 

Now assume p,.(r ,sl) > 0 for r e(a ,b)  and slc(a,b). Then 3 e l  > 0 
11 1 1 

3 p(r, s) > 0 for r --e '< r s  r + c and s - C  < s 2 s1+s1. Define 1 1- 1 1  1 1- 

( r , s ) s S i f f r  -.E < r < r  -E a n d s  - 8  I $ I , S  Let l -Cl* I 1 - - 1 1  1 1  

zk,) = inf p(r, s) 
S 



2 %  

Note that %(E: ) > 0 and Z ( E :  ) L  %(E:,) where 8 1 2  € 2 -  Since p(r,s) is 1 1 

continuous and p(q, q) = OQq&,b)lgiven E: > 0 3 6 =- 0 

"2 
3 < r < r + - and 1 > x.(r) > 0 for a < r - e  < r < r €2 Let xi(r) = 1 for r - - 

+ e 2 < b o r a < s  

x.(r) is continuous, therefore 

1 2  

< r < s l + c z  < b and x (r) =O elsewhere. Also, 

1 2 - - 1  2 . 1  

1-2 i .  

s +e s +e 
. S x.(r)p,,(r, s)x.(s)drds 

1 1 11 "S sl-€2 s1-e2 

xi(r) pii(r, s)x 1 . (s) drds . 
r - e  s - G  1 2  1 2  

(A. 7) 

but since p(r, s) = p' (s,r) the las t  two terms of Equation (A.7) are equal. 

Therefore 

+2Ss1+E2 

s - e  1 2  
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Since x (r)p..(r/ s)x(s) > 0 for r - E  < r <  r +E .and s - E  < s < s +E i 11 . 1 2  1 2  1 2  1 2  

if the area of integration is reduced in the las t  integral of Equation 

(A, 8) the value of the integral will be reduced. Therefore 

Since x (s)p. , ( r /  s)x,(r) > z(el) for rl-E2 5 r c  r - e  and s1-e2 5 s 5 s1+c2 
i 11. 1 1 2  

and xi(r)p..(rt syxi(s) e z(e  )/4 for rl-E2 5 r 5 E +r and rl-e2 5 s 5 e2+rl 
11 1 2 1  

and xik)pii(r, s)xi(s) < z(c1)/4 for s - e  < r < s +e and s -E  < S L  s +E 1 2 - - 1 2  1 2 -  1 2 '  

Equation (A. 9) reduces to 

1) 2 2 B(a,b) > -2 4 (ze,) +2 z(E1)"2 = 0 

Therefore B(a, b) > 0. 

The s a m e  result can be obtained if p, , ( r  I s ; is assumed less 
11 1 1 

than zero. These are both contradictions, therefore 

p..(r,s) = O  Va < r < b and Va s < b. 
11 

N o w l e t x  = O V k # i , j  i # j  

Therefore 

k 

Since 
G 

P(L s) = p' (s, r) 

(A. 10) 
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Therefore 

(A. 11) 

Since limits are the same on both variables the terms in Equation (A. 11) 

are equal and 

' (A. 12) 

assume p (r I s ) > 0 where rle(a,  b), s l d a I  
i j  1 1 1 ) .  Then 3 e  > 0 3 p,.(rI s) > O  

13 

f o r a < r  - e ( r ( r l + e < b a n d a < s  + S ( S ( S  + s < b .  1 1. 1 

Let x,(r) > 0 for rl-c < r 

for s - E  < s < s + E  

continuous. Therefore 

. 
r +e x,(r) = 0 elsewhere,xi(s) > 0 

' 3  1 ' I  

x.(s) = 0 elsewhere and x.(r) and x.(s) are 1 1 1 1  1 1 . -  

rlf$ s l+e 

r -6 s -6 1 

xi(r)p. .(r, s)x.(r)drds 
11 I 

1 
s B(a, b) = 2 s  

since x (r)p. .(r, s)x.(s) > 0 for r - e  e r < r + E  and s,-s < s .e s + E  
11 1 1 1 z 1 ,  

B(a,b) > 0. If p,.(r , s ) had been assumed less than zero B(a, b) would 

have been less tha'n zero. Both results are .contradictions, therefore 

11 1 1 -. 

pij(r, s) = 0 for a < r < b and a < s < b. 

It has been shown that p(r, s) = 0 for a < r < b and a < s < b. From 

continuity p(r, s) = 0 for a r - < b and a <s I < b. 

Q.E.D. 
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Corollary 2 .  

b 

a 
C(a, b) = x’ (b) p(s)x(s)ds =O VxeCEa, b] 

implies p(s) = O  for a < s - < b, where p(s) is an  nxn matrix continuous 

f o r a <  s s b .  

D- e . 
and for p..(b) < 0 i t  can be shown that C(a,b) c 0. These are both con- 

tradictions, therefore p. .(b) =O. 

11 - 
11 

Choose x.(s) = p .(SI a < s 5 b-c e > 0, x (b) =1 and x.(sj con- 
1 il i 1 

tinuous , therefore 

Now if pii(sl) > 0 for s c b choose such that b-e > s then 1 1 

2 b-el p..(s)ds > 0 where 8 < e l  and 2 
Jb-c a Pii(S)dS 2 J’ a 11 

Sb 
b- 

fore C(a,b) > 0. 

p,,(s)x.(s)ds can be made arbitrarily small by decreasing e ,  there- 
11 1 

For p..(s ) < 0 it can be shown that C(a,b) < 0. These are both 
11 1 

contradictions, therefore 
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Now let x =O k # i, j i #  j ,  then k 

Assume r 

P..(s,) > 0 s1 < b.  
11 

Then 3 8 > 0 3 p. . (s)  > 0 for sl-es s t  s +e and s < b 11 1 1 

For p .(s ) < 0 i t  can be shown that C(a,b) < 0. These are both con- 

tradictions, therefore p. ,(s) = O  a < s < b. Again by continuity 

p..(s) =O a < s 5 b 

il 1 

11 

Q.E.D. 
11 

It must now be shown that 

+ST-h-T so 

+so ST-h-T xi (7+s)p3(7 ,r,  s)x(T+r)drds = O  (A. 13) 

x' (T+s)P~(T I r ,  s)x(r+r)drds 
-h T-h-7 

T-h-7 -h 

implies that Equations (A. 1) and (A.2) are satisfied. First Equation (A. 13) 

is simplified by noting that 

implie s 

so sT-h-7 xi (T+s)P~(T , r r  s)x(T+r)drds 
T-h-7 -h 
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Interchanging the order of integra tion yields 

so ST-h-T x' (T+s)P~(T ,r ,  s)x(T+r)drds 
T-h-T -h 

Since r and s are dummy variables they may be interchanged yielding 

so ST-h-T X I  (T+s)P~(T,  r, s)x(.r+r)drds 
T-h-T -h 

.= ST-h-T so 
XI (T+S)P 3 (T , r, s)x(T+r)drds 

-h T-h-7 
(A. 17) 

Utilizing (A. 17) Equation (A.-13) becomes 

P Z b  I S)X(.r+S)ds+ x' (7+s)p3('r, r, s)x(T+r)drds 

+2sT-h-Tso 
XI h+S)P3(7, r, s)x(T+r)drds = O  

-h T-h-7 
(A.18) 

and x(7) = O .  Equation (A.18) becomes 

so so x' (?+-s)p3(~ , r ,  s)x(T+r)drds = O  
T-h-T T-h-T 

Let T~-T = q and S+T = v, then (A. 19) becomes 

(A. 19) 

From Corollary 1 

P ~ ( T , ~ - T , v - T )  = O  for T-h< q <  - T and T-h< v ~ 7  or 

p (7 , r ,  s) =O for T-h T+r L < T and T-h < T+S 5 7. (A.21) 3 

Making use of (A. 2 1) and unspecified x(t) for 7-h - < t < T and x(7)  = O  

Equation (A. 18) becomes 

2sT-h-T so 
XI (T+S)P~(I- , r ,  s)x(.r+r)drds =O 

-h T- h-7 
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assume p ..(T,r' , s  ) > 0 for -h < r < T-h-r and T-h-7 < s < 0. Then 

3 a n c : > O  s p  . . ( r , r , s ) > O f o r r  - e ~ r ~ r l + e a n d s  1 - e ( s s s  1 +e 

311 1 1 1 1 

311 1 

Let  x.(T+q) > O for rl-C < q < rl+e, x.(T+q) 
l-c' 1 1 .  

where r +e < T-h-7 < r 

> 0 €or s - e  < q < sl+e, xi(q) = 0 elsewhere, x (4) = 0 elsewhere and 

x = 0 k # i , j .  Equation (A.22) becomes 

1 

1 j .  

k 

but since x ( ~ + s ) p  

Equation (A.23) is a contradiction. If pij(7,r , s ) had been assumed less 

than zero a contradiction would sti l l  have been obtained, therefore, 

(T,r, s)xi(T+r) > 0 for rl-e < r < r +e and s - e  < s < s +C 1 3ij 1 1 1 

1 1  

P . , ( ~ , r ,  s) = 0 for T-h-7 < s < 0 and -h < r <: T-h-7- . A s  before continuity 3J1 
yie Id s 

p . (T,r, s) = 0 for T-h-7 < s < 0 and -h - -  < r < T--h-T. 
3 1j 

Therefore, from (A.24) and (A.21) p , . ( ~ , r ,  s) = 0 for T-h < S+T L T  and 

since p3(7 , r, s) = p (7 I s, r) then p , .(I-, r, s) = 0 for T-h < rt.r 
311 

7. 3 3 11 

Rewriting Equation (A. 13) yields x' (7) &:h-T P2(T , s)x(T+s)ds = 0 

-. - 

VX ~ C [ T - ~ , T ] .  Letting q = 7+s yields 7 

x' (7 )  qmh P2(T t q-T)x(Y)dq = 0 

From Corollary 2 

!.. , q-T) = 0 for T-h e L T P2 
or 

p 2 ( ~ ,  s) = 0 for T-h < s+ T 2 T . Q.E.D. 
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